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Abstract

The singular perturbation method is applied in combination with the variational method to the general Reissner’s
equations describing axially symmetric large deflections of thin composite shells of revolution with varying material and
geometrical parameters in meridian direction. The obtained asymptotic nonlinear boundary value problem is signifi-
cantly simpler in comparison with the original one. The asymptotic model has the following advantages: number of the
geometrical and stiffness parameters of shell is effectively reduced, and singularities are eliminated without loss of the
accuracy of the solution. The simple asymptotic formulae have been derived in case of completed shells. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Study of equilibrium states of shells with large deflections is of a practical interest for two reasons. First,
the information concerning the initial post-buckling behavior is frequently not sufficient for analysis of
stability of thin shells due to the great imperfection sensitivity of such systems. It means that small im-
perfections both in geometry and loading can result in strong reduction of the classical critical load ob-
tained for perfect shell. Koiter’s perturbation method (Koiter, 1969) and other standard methods of
bifurcation theory fundamentally furnish the possibility of taking into account only small imperfections.
This results in a critical load value which is close to a classical one. However, the ranges of admissible loads
of real structures are restricted by significantly smaller values and conform to nonclose and nonimminent
post-buckling equilibrium states of shells which are characterized by large displacements. Thus the post-
buckling path in the load-displacement diagram with large deflections could provide additional required
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information on post-buckling behavior of shells in order to be able to estimate stability. Moreover, the
methods of local or standard bifurcation theory based on using the eigenfunctions of the appropriate linear
buckling problem, is not applicable to many practically important problems for shells, such as circular
cylinders under axial compression or spheres under external pressure, because of a large number of closely
spaced eigenvalues. Furthermore, experiments and numerical and analytical solutions (Berke and Carlson,
1968; Evkin and Dubichev, 1997a,b; Pogorelov, 1967; Babenko, 1977; Kriegsmann and Lange, 1980; Lange
and Kriegsmann, 1981; Graff et al., 1985) show that shell equilibrium configurations with large deflections
are quite different from classical buckling modes. They consist of regions of inextensional strain (for ex-
ample, inverted part of sphere) surrounded by narrow zones of extensive bending and membrane de-
formations (inner boundary layers). Investigation of such configurations calls for development of new
sophisticated methods of analysis.

A second reason is that structures with thin-walled elements whose application involves large displace-
ments, rotations and deformations are recently used intensively, for example, metallic bladders for aircraft
cryogenic fluid tanks and propulsion systems. The typical problem in this case is to design a structure with a
given load-displacement diagram and to estimate stress and strain states of appropriate equilibrium shapes.

This paper continues the series of investigations (Pogorelov, 1967; Babenko, 1977; Ranjan and Steele,
1977; Wan, 1978; Kriegsmann and Lange, 1980; Lange and Kriegsmann, 1981; Graff et al., 1985; Evkin,
1989, 1995; Evkin and Korovaitsev, 1992; Korovaitsev and Evkin, 1992; Evkin and Dubichev, 1995,
1997a), in which the asymptotic and geometrical methods were elaborated to obtain the solution of non-
linear shell equations. The main purpose of this study is, on the first hand, to develop the most general
approach to this problem; and on the other hand, to obtain the simple analytical solution with accuracy
similar to the one of the original thin shell model. The generality of the approach is based on a choice of the
initial mechanical model. We consider anisotropic composite shell of revolution with geometrical and
stiffness parameters, that vary in the meridional direction, and we assume the structure and its deformations
to be axisymmetric. In contrast to works of other authors (Babenko, 1977; Kriegsmann and Lange, 1980;
Lange and Kriegsmann, 1981; Graff et al., 1985) in which the singular perturbation analysis was applied to
the spherical shell under external pressure, in the present paper we combine the asymptotic and variational
methods. This allows us to consider only the leading order asymptotic boundary value problem and, in all
cases, to reduce the initial complex nonlinear problem with a singularity and a large number of geometrical
and stiffness parameters to a much simpler one without singularities and with a maximum of one pa-
rameter. The latter one is equal to zero for the shell which is symmetrical with respect to its midsurface. We
have obtained the numerical solution of a respectable problem and derived simple resultant asymptotic
formulae describing load-displacement diagrams and stress states of shells of revolution with large de-
flections. The error of obtained results is the same one, implicit in the initial Reissner’s equations, because
these equations can be obtained from the three-dimensional theory of elasticity using the asymptotic
method with the same small parameter as we use in the suggested approach.

2. Mechanical model and shell equations

Our study is based on the Reissner’s equations (Reissner, 1969, 1972) in their most general form. This
model contains the following two main restrictions. The first one concerns thin shell theory based on
Kirchhoff’s hypotheses. This restraint is of a principal character in our asymptotic analysis, because of an
assumption of smallness of ratio of shell thickness to radius of curvature.

The second restriction is related to the axial symmetry of a structure and its deformation. The effective
methods capable of dealing with two-dimensional nonlinear shell theory problems are not available yet,
because of rather complicated mathematical problems due to the high multiplicity of the critical eigenvalue
and singularities. On the other side, the axisymmetric structures are very important from a practical point
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of view. A very important problem in designing transformable thin-walled structural elements is to ensure
axial symmetry of their deformation with large displacements, because of the intended technological
functions of structures and because of lack of structural materials capable of withstanding strong bending
in two directions. This can be achieved by using orthotropic composite structures with improved flexural
rigidity in the circumferential direction. For example, in a paper (Evkin and Dubichev, 1995) the conditions
of bifurcation of axisymmetrical equilibrium configuration to nonsymmetric one have been derived for
large bending deflections of orthotropic shallow sphere. Besides, the experimental investigations (Berke and
Carlson, 1968; Evkin and Dubichev, 1997b) in spherical shell stability field point out the special importance
of studying the symmetrical shapes. In the present study, we consider a composite shell with geometrical
and stiffness parameters variable in both meridian and transversal directions.

Reissner’s equations describe arbitrarily large deflections, rotations and deformations of a thin shell of
revolution. According to them, the basic relations that link displacements and deformations of points on
the midsurface of the shell can be presented as follows:

u du
szzr—o, a:(l—i—s])cosw—cosxljo (2.1)
%: (14 &) siny — siny, (2.2)
s
Ay 1+e _[siny siny,
A R, Xz—( , " (I+&) (2.3)

where ¢, and ¢, are the deformations of midsurface element in the meridional and circumferential direc-
tions, u and v are respectively the radial (horizontal) and axial (vertical) displacement components, y, and
Y are the angles of inclination of the tangent to the meridian before and after shell deformation (Fig. 1),

inner boundary layer F,

i /qv
AN

Fig. 1. Axisymmetrical equilibrium configuration of thin shell of revolution with large deflections.
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1/Ry, 1/R, and y,, y, are the curvatures and their changes in meridional and circumferential directions
respectively, s is the independent variable, which means the distance from the coordinate origin along an
arc of the meridian to the point being considered; whereas, ry and r are the distances from this point to the
symmetry axis z, subscript 0 indicates properties of underformed shell, 1 is meridional, and 2 is circum-
ferential. We have also evident formulae

: 1 dy
ro =Rysiny,, r=ry+u, R—l:d—so (2.4)
To study the equilibrium configurations we load the shell by an external pressure ¢ quasistatically. The
differential equilibrium equations of a shell element have the form

%(1+51)<@V+q0> (2.5)
i—g:—(wsl)(coer—%Jqu) (2.6)
ddﬁjl:—(1+81)[C0:¢(M1—Mz)—Usinlp+ Vcosy (2.7)

Here ¢, and ¢,, U and V are the horizontal and vertical components of the external load ¢ and stress re-
sultant of deformed shell respectively, N, and M, are the stress resultant and bending moment that arise in a
unit area perpendicular to the meridian, N, and M, are the corresponding internal force and moment loads
that act on a unit area in the plane of the meridian. All stress resultants are defined as being per unit
deformed length of the shell. There is obvious relation between introduced forces

Ny = Ucosy + Vsiny (2.8)

We use formulae linking generalized internal loads and axially symmetric deformations in the general
form

that allows us to consider shells without symmetry with respect to their midsurfaces (for instance, laminated
composite structures (Kalamkarov, 1992)).

To complete the formulation of the initial boundary value problem we introduce the classical types of
boundary conditions (at y, = £,) in following forms:

lp:i*a u:()a v=0

=<, U=0, v=0 (2.10)

The first condition corresponds to the shell clamped along meridian v, = &,, the second condition corre-
sponds to an edge resting on a frictionless surface, and the last one corresponds to the simply supported
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edge. We confine ourselves to consideration of shells with simply connected domain 0 <, < &,. Forming
the solution, we will take into account the symmetry conditions at the shell pole (at y, = 0).

3. Singular perturbation analysis
3.1. Asymptotic analysis of boundary value problem

The above formulated boundary value problem is rather complicated due to the presence of a large
number of structural properties (nine stiffness and at least two geometrical parameters) changing in the
meridional direction. To simplify the initial problem and to reveal the contained implicit singularity we
apply the asymptotic method introducing the nondimensional parameter in rather general form

Ryh D

2 2

= 3.1
¢ R% a*Bzzhz ( )

where

BnK} — 2B,KinKyy + Bk,
BBy, — B3, ’

B
BBy

D= D11 — a, = 1
To understand the meaning of this parameter let us consider several particular cases. For the orthotropic
shell of revolution, which is symmetrical with respect to its middle surface (without eccentricity), we obtain
the following expression:

Roh D
2 2 11
=— 32
R\ a.Bph? (32)
For the case of isotropic shell we have
hR
2 2
&= 33
R3/12a, (3:3)
Finally, for the isotropic sphere we derive the well-known parameter
h
2
t = 34
© TRV, 34

which is small for a thin structure and was successfully used in the asymptotic analysis of shell theory
boundary value problems. Returning step by step to the initial definition (3.1) of parameter &* we conclude
that it remains small for all thin shells of revolution except those, which are strongly improved by flexural
rigidity in meridional direction. This condition has the following mathematical expression:

~0O(1) (3.5)

Besides, a class of shells of revolution for which the radii of the principal curvatures are the same order of
magnitude is considered:

Lo (3.6)

In addition, it is assumed that the shape of the shell and its rigidity properties vary smoothly in the me-
ridional direction. Then
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1 dF
F v, ~1 (3.7)
where F is an arbitrary characteristic (including external pressure) of the undeformed system. The above
restrictions (3.5)—(3.7) are not strong and have an asymptotic meaning for &> — 0. They allow us to obtain
analytical solutions for a rather large class of thin shells of revolution.

To facilitate the asymptotic analysis we introduce new basic dimensionless variables, which are of the
order of magnitude of unity and are marked with over-bars in the following formulae:

Ny = "7 1q.RysinyyNa, U =0.25¢2R,q.U, V =e51q RV (3.8)
gp = g4tlgy, g = 4t (3.9)
% =" /Ry, %o = €% /Ry (3.10)
Y=y (3.11)
4 =6%q.9,, qu=2¢%¢.q,, q.= ]%\/CZ*D—BH (3.12)

It should be noted that in the special case of an isotropic spherical shell the value of external pressure ¢,
coincides with the classical critical one.

Relations (3.8)—(3.12) represent only the leading terms of asymptotic expansions. All new variables are
multiplied by the parameter ¢ of different orders, which should be chosen during asymptotic analysis. As far
as it is hard to describe the routine process of obtaining appropriate exponents k; among integers, it is not
difficult to verify the final result. We have obtained that k;, =0asi=1,2,...,7 and ks = 0 or 1. Naturally,
we cannot guarantee the uniqueness of derived solution because of nonlinearity of boundary value prob-
lem, but we intend to show the importance and give a mechanical interpretation of obtained results.

We are now in a position to simplify the given Reissner’s equations according to asymptotic relations
(3.8)—(3.12) with k; = 0. From (2.3) and (2.8) we derive that

1= e (3.13)

and
N; = 0.25R,q.U cos (3.14)

The last relation and formulae (3.8)—(3.11) lead to the asymptotic model, in which bending in the me-
ridional direction (y; > y,,1/R;,1/R,) and circumferential stress (N, > Ny, U, V) are dominant. Note that
this kind of deformation is commonly considered in the linear theory of boundary effects of thin shells.
However, as we will see, a possibility of existence of inner boundary layers emerges in thin shells with large
deflections due to the nonlinearity of system. Besides, it follows from Eq. (3.9) that deformations are small
compared to unity. From Eq. (3.11) we also see that the angle of rotation ¥ is not small. In opposite case,
we have to modify the definition of small parameter according to Evkin (1989) and consider the ratio of
shell thickness to the deflection amplitude instead of parameter given by Eq. (3.1). But the final results will
be the same in both cases.

The stress—deformation relations become

& =

1 B K
——(Bi2&2 + K1 y1)s N> = gBna, + x (Kzl - 2 11) (3.15)
1 1
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K2 KB
M, =y, (Du _E> + & (KIZ — 211]2) (3.16)
KK KB
M, =y, <D21 - 2]; “> + & (Kzz - ;1 12) (3.17)
1 1

from which we derive formulae expressed in terms of main characteristics N, and y,
N, KB — KB

82:a*B22_X1C’ M, = y,D+ N,C, sz (3.18)
In case of isotropic shells without eccentricity we arrive to

M, =Dyy, M, = %Mh Ny = a.Bne, & = —%Fz (3.19)
Let us simplify the equilibrium equations. From Eq. (2.5) we have

1 vo
= RzTnl//o/o RiR; sinYyq.q,dy, (3.20)

Eq. (2.6) becomes

0. 253l d (¢-RU) = ¢q.N, (3.21)

R dy,

Taking into account Egs. (3.20), (3.21), (3.18) and (3.13), we obtain the last equilibrium equation (2.7) in
the final form

1 d, ,dy

—— —¢&°q.R + &’nsiny, R Riq.U) = Usiny + g, cos 3.22)
Ra. " Ry, o g, (10-0) (
where
4 Yo . a.By
Gy = —F——— RiR «q,dY,, =C 3.23
q, Z.R\R, sin 1//0/0 1R sinog.q,dypg,  n D ( )
Joining two relations (2.1) we have equation
d
(Zzi’o) (14 &) cosy —cos i, (3.24)
s
which can be represented using Egs. (3.18), (3.21) and (3.13) in the conclusive form
1 d
sty d (Riq.U) — €nsiny Ry —— v _ = cosy — cos Y, (3.25)

— —¢
Ridy,” g diy dys,

We have obtained the governing system of two equations (3.22) and (3.25), which contains two variables
U and  depending on y,, only one stiffness characteristic n and small parameter ¢2. We have derived
simplification of the initial Reissner’s equations due to asymptotic analysis, which leads to the clear physical
model of a thin shell with the large deflections and not small angles of rotation : curvature change in the
meridional direction is much larger than initial curvatures of underformed shell and its curvature change in
the circumferential direction (y, > y,, /Ry, 1/R,); circumferential stress resultant is much larger than other
membrane stress resultants (N, > N, U, V); strains are small compared with unit: ¢, & < 1. It should be
noted here, that we have used all the Reissner’s equations except Eq. (2.2), checking their consistency
according to the asymptotic representations (3.8)—(3.12). Eq. (2.2) serves for evaluation of the vertical
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displacement v after deriving the solution of main problem (3.22) and (3.25) as well as Eq. (3.20) serves for
calculation of the vertical reaction on the shell edge.

The main feature of the governing equations is the presence of the small parameter & at the higher-order
derivatives. The left-hand sides of both Egs. (3.22) and (3.25) vanish upon setting > = 0, and the reduced
system has two obvious solutions. The first one

Y =,, U = —q,cot, (3.26)
corresponds to the initial trivial state of shell (region F; on Fig. 1). The second one
V==, U = g, coti, (3.27)

is a reflection of part /> of initial midsurface of shell with respect to some plate, which is normal to the axis
of symmetry z. Moreover, the latter solution allows also the vertical translation of part /5 as a rigid body.
Although it is of a significant importance, the possibility of translation of the shell’s part was omitted in
previous investigations. Actually, we can construct several combinations (cascade) of such types of solu-
tions in some regions, but, in practical sense, the most important one is sketched on the Fig. 1. It is im-
portant, that both solutions (3.26) and (3.27) satisfy the reduced system as well as the initial full Reissner’s
equations.

We should emphasize the mechanical meaning of inverted shape of the shell. Namely, it can be attained
by isometric transformation of the midsurface of a shell without extensional strain. It is clear that such
configurations are more preferable for thin-walled structures with a flexural rigidity significantly smaller
than the extensional one. Such forms, as well as narrow regions of extensive deformations connecting
smooth parts of shape were observed in a number of experiments. These regions correspond to the inner
boundary layers joining together in a smooth manner two solutions of type (3.26) and (3.27) obtained in
first stage of singular perturbation analysis. The second stage is to construct fast changing boundary layer
functions, which we introduce in the form

U=0(), y=y(9), (3.28)

where ¢ = (Y, — &)/e, & is an unknown angle defining the location of the boundary layer of width O(e).
The presence of inner boundary layers, whose position on the shell surface is unknown in advance, sig-
nificantly complicates the solution of fully nonlinear shell equations.

For arbitrary, but not too small &;, we obtain the following equations

c:—g—i— sin foncj—g = Usiny + g,cos (3.29)
d’U n d cosy —cosé&
42 sing d& - sin’ g, (330
where
4 <o
= &) = 480 = e [ RiRasing..000

In order to complement the specification of problem we introduce the parameter defining the location of
the shell edge

=& —%)/e (3.31)

and taking into account Egs. (2.1), (3.18), (3.21) and (3.13) we rewrite the boundary conditions (2.10) in
following form (at & = &)



A.Yu. Evkin, A.L. Kalamkarov | International Journal of Solids and Structures 38 (2001) 8961-8974 8969

n

y=¢, U- V=0 (3.32)
y—t. T=0 (3.33)
W tnsingU =0, U ‘ﬁ‘”l -0 (3.34)

Besides, we impose conditions of asymptotic transfer of boundary layer functions to solution (3.27) (if &, is
not too small, which means that boundary layer region is located sufficiently far from the shell pole)

Y= =&, U=U, asé— — (3.35)

where Uy = ¢,(&) cot &.

Concerning the position of boundary layer we will distinguish two cases. The first one corresponds to the
boundary layer location close to the edge of shell, if (£, — &) ~ . Then we can replace &, by &, in formulae
(3.32)-(3.34). On the other hand, when the boundary layer is sufficiently far from the shell border, we have
to satisfy the transfer conditions of boundary layer functions to the trivial solution (3.26):

y=¢&, U=-U, asé— +oo (3.36)

Solving the main boundary value problem we can link the deflection amplitude with the load parameter.
Then using the solution of this problem U(¢), (&) and Egs. (3.13), (3.10), (3.21), (3.8), (3.18), (3.17) we can
return to the initial variables and obtain asymptotic estimations of stress state of shells according to the
following simple and explicit formulae:

B D1/4(a*322)3/4

N =0, N,= N> sin &,U (¢) (3.37)
D ., . . —

M, = E(!ﬁ (&) +nsin&U (&) (3.38)
D L . - —

My = - DY)+ sin T () (3.39)

where

Dy KyK; BC B11Ky — Ky 1By

D=2 g =22 2wt = BVa.BpD 4
D B.D D’ B, , N a.b3) (3 0)

In the paper (Kriegsmann and Lange, 1980) the authors have obtained, that go — 0 for completed
spherical shell or by receding of the inner boundary layer far enough from the shell boundary, and that load
parameter was not contained in leading asymptotic equations (3.29) and (3.30). Therefore, solving them
only, it is not possible to establish the relation of the load versus the parameters of shell equilibrium
configurations. To handle this problem it was suggested to take into consideration the next asymptotic
approximation (Kriegsmann and Lange, 1980; Graff et al., 1985). But it is clear that by locating the
boundary layer far enough from the shell edge the problem can be simplified because of its independence
from types of edge support. In order to analyze this and to gain deeper understanding of the asymptotic
approach we will invoke the variational principle.
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3.2. Variational approach to the asymptotic analysis of the problem

We use the Lagrange principle, according to which the functional of total potential energy £ = W — 4 of
system must attain a stationary value that corresponds to equilibrium state of the shell. Here W is the
potential energy of structure and A4 is the work of the constant external load on the admissible displace-
ments. Evaluating W and 4 we distinguish two regions (Fig. 1): the first one F; corresponds to the boundary
layer, the second one F, corresponds to the inverted segment described by the smooth part of asymptotic
solution. Using leading asymptotic components of stress and strain components of the shell we obtain the
formula for the boundary layer deformation energy

F3

which can be represented according to above obtained relations in the simple form

Wi = a.nByR;E sin &g’ T /R, (3.42)
where

&1 5 5

g / 72+ ()] ae (3.43)

and
sin &
f= 0U, o =y/é. (3.44)

To calculate W, we have to solve asymptotic equations (3.29) and (3.30) with related boundary conditions.
It is not necessary for the evaluation of

D D 2D

Wy = // — ( P+ /% o = m/z) dr (3.45)
where y, = —=2/Ry, 1, = —2/R2 in the inverted inextensional part of shell. For example,

Wy = 41Dy (1 — cos &) (3.46)
for the spherical shell without eccentricity. Moreover, if

Dy Dy

—= ~0(1), — ~ 01 3.47

pa~o).  pE~o() (347)

then W5/ W, ~ ¢ and we can drop W.
It is clear, that evaluating work A of external load we have to take into account only corresponding
displacements in domain F, because they are asymptotically small in the boundary layer region. Thus

//quvvsz (3.48)

We distinguish two types of displacements in domain £ (0 <y, < &), which are sketched in the Fig. 1.
The first one (dashed line with amplitude of deflection 7 in the Fig. 1) is a reflection of a part of the initial
surface with respect to some plate, which is normal to the axis of symmetry. Work denoted as 4, corre-
sponds to the above displacement. The work denoted as 4, corresponds to additional translation of part F
as a rigid body (with vertical displacement v, shown in the Fig. 1). We can obtain the total amount of work
assum 4 = A, + 4,. Let us derive the formula for calculation of 4,(&,) assuming that the initial midsurface
of shell of revolution is given in the general parametric form
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z=z(Yy), 7o = 10(Y) (3.49)
Then the vertical displacement function of first type of displacement can be represented by formula
v=2[z(&) —z(y)], 0< Yy <&o (3.50)

We have also

ay=an | " [2(¢0) — 2bo)roguRr di (3.51)

Using Eq. (3.51) we can obtain explicit expressions for work A4, if shell surface and loading form are given,
because 4; does not depend on unknown boundary layer functions. For example, for uniform external
pressure we derive

6A1 2 -2 dz(fo)
— = 2nqR;sin” & = 3.52
0o e ‘ déo ( )
For the vertical force Q concentrated in the shell pole we have 4, = OW,,
04 dz
Wy = 20s(6) — 2(0)] and oAt = 5o %) (3.5
0o d&o

The expression for another summand 4, of the total work is more complicated due to its dependence not
only on global parameter of the equilibrium configuration &, but also on boundary layer functions, which
are unknown in advance. We have

&
A2 = 1)0/ Zﬂroqu (354)
0
According to Eq. (3.23)
A2 = ﬂ?qvq*Rle sin éOUO (355)
From Eq. (2.2) we derive
& 0
vy = / (sin &, — siny)dé — / (sin &, + siny) d¢ (3.56)
0 —00
or
&
= e [ sin(Gop) e+ A8, &) (3.57)

where the second summand does not depend on boundary layer functions. Dropping it for our further
purposes, we obtain the final expression

i 2a 5
Azz—a*nBzzRféésmfoﬁSéz‘;/ sin (&, @) dé& (3.58)

of\2 J —o0

We will consider two steps using the variational principle. At the first step we will take into account only
those summands of energy, which depend on boundary layer functions /(&) and ¢(&). At this step we can
drop component 4;, which does not depend on f(£) and ¢(¢£) and consider &, as a constant. After obtaining
solution for boundary layer functions we will move to the second step at which we will consider energy
varying in &,. We have the total potential energy of the system at the first step in the following form:

E =W, —4; = a.nBpRIE sin &g’y /R, (3.59)
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&
Joz/

is the functional, which variation in the functions f(£) and ¢(&) we have to consider jointly with the Eq.
(3.30) represented in the following form:

Here

£ (o) + 2;” sin (éoqo)] d¢ (3.60)

50

f/ o n(DH _ COS (é()q)) — COS 50 (361)

&psin &,

Using Lagrange’s factor A; we obtain the functional

&
Jo:/

variation of which in 4;, fand ¢ leads to Eq. (3.61) or Eq. (3.30) and to equations

24 () +% sin (200) + 7 (f’ gt — cos (o) — cos 50)] dé (3.62)

S0 50 Sin 50

2 =M =0 (3.63)
/4 sin (60(/)) " " 2‘§u 2 _
Sné, 20" —ni + 2 cos (&) =0 (3.64)
Formula (3.63) together with Eq. (3.44) yields
2si _
sy =iy (3.65)
<o

and instead of Eq. (3.64) we arrive at the equilibrium equation (3.29).

In the case, when boundary layer region is close to the shell border (¢, — &, ~ ¢) we do not obtain new
useful information except a variational point of view on the problem and verification of asymptotic
equations (3.29) and (3.30). But in case if the inner boundary layer is located sufficiently far from edge of
shell ((&¢, — &))/e > 1) we arrive at the following asymptotic simplifications £, — +o0, vp = 0 and ¢, ~ .
This means that the displacement of a part F> of shell as a rigid body is absent, as well as the corresponding
work A, and a load parameter are small. It is not contained in the leading asymptotic boundary value
problem, which takes the form

dy ., U .

— +sin {yn— = Usin 3.66

déz é()n déz lp ( )

dzj_ n d  cosy —cos (3.67)

d&  sing, d&? sin’ &, ’
with boundary conditions

U=0, Y =+& asé— +oo (3.68)

Solving this problem numerically for different values of constant » and &, we can obtain the expression
for total potential energy in the following form: E(&;) = Wi(&) — 41(&,), and use another variational
condition, which was not considered at the first step. Namely, varying E(&,) in &, we obtain the lacking link
between load and parameter of equilibrium configuration & in a simple form

oW 04,

=5 (3.69)
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We have solved problem (3.66)—(3.68) numerically for » = 0 and have obtained in accordance with (3.43)
and (3.44) the following expression:

J=223+0.116& (3.70)

which fully evaluates the deformation energy (3.42). Thus, simple explicit formulae (3.42), (3.51), (3.53)
together with (3.69) and (3.70) describe the equilibrium path of shell of revolution with large deflections. All
shell properties in these formulae are functions R (&), Ry(&y), (&), B (&), a.(&), J(&,) that depend on
the angle &, defining the location of the inner boundary layer.

For estimation of the stress state of structure we obtain asymptotic formulae

D D
max |M, | :ﬁmax‘q)’], max |M| = =2 max |M,| (3.71)
R18 D11
max |N;| = a.BypR Eemax | f|/Ry,  |N| < |V, (3.72)
where
max | /] = 0.4 +0.0055,  max |¢| = 0.95+ 0.08& (3.73)

In case, when fé < 1, we obtain results for shallow shells (Evkin, 1989; Evkin and Dubichev, 1997a).

4. Conclusions

The general asymptotic approach for the analysis of anisotropic composite shells of revolution with large
axially symmetric deflections is introduced. It allows a significant simplification of the initial governing
Reissner’s equations. Instead of a very complex boundary value problem with singularities and a large
number of stiffness and geometrical parameters of structure, the asymptotic nonlinear boundary-value
problem is derived in leading order asymptotic approximation. This boundary value problem is described
by the Egs. (3.29), (3.30), and boundary conditions (3.32)—(3.35). It is free of singularities and it depends
only on one shell parameter n defined in the paper. This parameter is equal to zero for a shell symmetrical
with respect to its midsurface, or for a shell having eccentricity only in the circumferential direction, when
K;; =0 and Kj» = 0 in formula (3.18). Further simplification has been achieved by means of variational
principle for the complete shells or in the case when inner boundary layer is located sufficiently far from the
shell boundary. The explicit asymptotic formulae describing both shell behavior with change of load (3.42),
(3.52), (3.53), (3.69), (3.70) and stress states of structure (3.71)—(3.73) have been obtained. It is important to
note that the accuracy of obtained asymptotic results coincides with the accuracy of the original boundary
value problem for a thin shell which itself is based on the asymptotic limit of three-dimensional equations of
theory of elasticity with respect to the same small parameter.
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